
Constructive Computer Architecture:

Pipelined Processors

Thomas Bourgeat – EPFL

Slides prepared with Arvind (6.192 – Spring
23 MIT)

3/14/2024 L07-1

Ordre du jour

Entrée: Pipelining

Plat: Pipelining

Dessert: Pipelining

So pipelining left and right, But first,
why so much pipelining?

3/14/2024 L07-2

Las Meninas (The Maids of
Honour) Diego Velázquez 1656

Portrait of
Infanta
Margarita, the
daughter of
King Philip IV,
in Royal
Alcazar, Madrid

3/14/2024 L019-3

By some
measures,
the most
important
painting in
the Western
art history

Different lighting

3/14/2024 L019-4

It is big!
Museo del Prado, Madrid

3/14/2024 L019-5

Engages the viewer

3/14/2024 L019-6

Picasso
Picasso had left Spain because of the Spanish
civil war in nineteen thirties and had never

seen Las Meninas

In 1956, at the 300th anniversary of Diego
Velázquez’s Las Meninas, Picasso revisited
Madrid to see the painting

The story goes he came back and locked
himself in his studio for three months and
painted 58 versions of it – deconstructing and

constructing – not copying

◼ Can be seen at Museo Picasso in Barcelona

3/14/2024 L019-7

Deconstructing & Constructing:
Las Meninas

3/14/2024 L019-8

Infanta Margarita

Perplexed? Distracted by sun light?

3/14/2024 L019-9

Deconstructing & Constructing:
Las Meninas – Infanta Margarita

3/14/2024 L019-10

Deconstructing & Constructing:
Las Meninas

3/14/2024 L019-11

Deconstructing & Constructing:
Las Meninas

3/14/2024 L019-12

Deconstructing & Constructing:
Las Meninas

3/14/2024 L019-13

Why?

Picasso was 75 and very aware of
his Spanish heritage. Was he
trying to improve upon the
master’s work?

Picasso reportedly said:
“I would say..what if you put them a little more to the right or left?
I'll try to do it my way, forgetting about Velazquez. The test would

surely bring me to modify or change the light because of having
changed the position of a character. So, little by little, that would be

a detestable Meninas for a traditional painter, but would be my

Meninas.”

L019-143/14/2024

Let’s build detestable
pipelined processors!

3/14/2024 L07-15

Multicycle Processor: Analysis

Lot of unused hardware in any
given clock cycle!

PC

Inst

Memory

Decode

Register File

Execute

Data

Memory

Execute

L
o
a
d
W

a
it

Fetch

Non-Load InstructionsLoad Instructions

Assuming 20% load instructions, and memory latency
of one, the average number of cycles per instruction:
◼ 2 x .8 + 3 x .2 = 2.2 higher memory latency will make this

number much worse

 pipeline

3/14/2024 L07-16

Processor pipelines
Pipelining a processor encompasses many core
challenges of computer architecture

◼ Stringent correctness requirements

◼ Requires speculative execution of instructions to
pipeline at all!

◼ Requires dealing with a variety of feedback in the
pipeline

There are simple pipelined cores, there are
also tremendously sophisticated pipelined cores

3/14/2024 L07-17

New problems in pipelining instructions
(over arithmetic pipelines)

Control hazard: pc for Insti+1 is not known until at least
Insti is decoded. So which instruction should be fetched?
◼ Solution: Speculate and squash later if the prediction is wrong

Data hazard: Insti may be data dependent on Insti-1, and
thus, it must wait for the effect of Insti-1 on the state of the
machine (pc, rf, dMem) to take place

◼ Solution: Stall instruction Insti until the dependency is resolved

◼ Number of stalls can be reduced by bypassing, that is by
providing additional datapaths

PC Decode

Register File

Execute

Data

Memory

Inst

Memory

InstiInsti+1 Insti-1

3/14/2024 L07-18

Plan
1. Develop a two-stage pipeline by providing a solution

for control hazards

2. Develop a two-stage pipeline by providing a
solution for data-hazard

3. Develop a three-stage pipeline by providing a solution
for data hazards and control hazards

To keep the explanations simple, we will first show
the solutions with magic memory and then discuss
pipelining multicycle processors

3/14/2024 L07-19

Control hazard

▪ Fetch stage initiates instruction fetch and sends the pc to
Execute stage via f2d. It speculatively updates pc to pc+4

▪ Execute stage picks up instruction from f2d and executes
it. It may take one or more cycles to do this

▪ These two stages operate independently except in case of
a branch misprediction when Execute redirects the pc to
the correct pc. All “wrong path” instructions have to be
squashed

pc rf

fetch D+execute

iMem dMem

f2d

We will offer a solution
that is independent of
how many cycles each
stage takes

3/14/2024 L07-20

Ex LWF

Timing diagrams and
bubbles

 t0 t1
 t2 t3 t4 t5 t6 t7 t8 t9 t10

Fetch
Ex
LW

I0

I2

I1

Ex LWF

I0 I1

I2
I2

I3
I3

Multicycle Processor

Execution of
I0; I1; I2; I3; ...
only I2 is a load
instruction

 t0 t1
 t2 t3 t4 t5 t6 t7 t8 t9 t10

Fetch
Ex
LW

I0

I2

I1
I0 I1

I2
I2

I3
I3

Two-stage Pipeline

Fetch
Ex
LW

I0 I1
I0 I7

I8
I8

I7

Suppose I0 is a
branch instruction
which jumps to I7

instead of I1

I1

prediction

squash
Is

speculation
correct?

If squashing takes more than
one cycle, then I7 will get
further delayed

bubble: Ex/LW
can hold only one
instruction

3/14/2024 L07-21

How do we detect a
misprediction?

We initiate a fetch for the instruction at pc,
and make a prediction for the next pc (ppc)

The instruction at pc carries the prediction

(ppc) with it as it flows through the pipeline

At the Execute stage we know the real next
pc. It is a misprediction if the next pc ≠ ppc

3/14/2024 L07-22

What does it mean to squash a
partially executed instruction?

The instruction should have no effect on the
processor state

◼ must not update register file or pc

◼ must not launch a Store

These conditions are easy to ensure in our
two-stage processor because there is at most

one instruction in the Ex/LW state

3/14/2024 L07-23

Killing fetched instructions
In a simple 2-stage design, all the mispredicted
instructions were present in f2d. So, the Execute

stage can atomically:

◼ Clear f2d

◼ Set pc to the correct target

◼ Hmmm, actually, can it clear f2d?

In highly pipelined machines there can be

multiple mispredicted and partially executed
instructions in the pipeline; it generally takes
more than one cycle to kill all such instructions

Need a more general solution then clearing the f2d FIFO

3/14/2024 L07-24

Epoch: a method to manage
control hazards

Add an epoch register to the processor state

The Execute stage changes the epoch whenever the pc
prediction is wrong and sets the pc to the correct value

The Fetch stage associates the current epoch to every
instruction sent to the Execute stage

The epoch of the instruction is examined when it is
ready to execute. If the processor epoch has changed
the instruction is thrown away

nap

inst

targetPC

iMem

rf

execute

dMem

f2d
pc

epoch

Next address
predictor,
e.g., pc+4

3/14/2024 L07-25

An epoch-based solution
rule doFetch ;

 let instF=iMem.req(pcF);

 let ppcF=nap(pcF); pcF<=ppcF;

 f2d.enq(Fetch2Decode{pc:pcF,ppc:ppcF,epoch:epoch,

 inst:instF});

endrule
rule doExecute;
 let x=f2d.first; let pc=x.pc; let inEp=x.epoch;
 let inst = x.inst;
 if(inEp == epoch) begin
 ...decode, register fetch, exec, memory op,
 rf update nextPC ...
 if (x.ppc != nextPC) begin pcF <= eInst.addr;
 epoch <= next(epoch); end
 end
 f2d.deq; endrule

Can these rules execute concurrently ?

How many epoch values are sufficient?

3/14/2024 L07-26

An epoch-based solution
For concurrency, turn pcF in an EHR
rule doFetch ;

 let instF=iMem.req(pcF[0]);

 let ppcF=nap(pcF[0]); pcF[0]<=ppcF;

 f2d.enq(Fetch2Decode{pc:pcF[0],ppc:ppcF,epoch:epoch,

 inst:instF});

endrule
rule doExecute;
 let x=f2d.first; let pc=x.pc; let inEp=x.epoch;
 let inst = x.inst;
 if(inEp == epoch) begin
 ...decode, register fetch, exec, memory op,
 rf update nextPC ...
 if (x.ppc != nextPC) begin pcF[1] <= eInst.addr;
 epoch <= next(epoch); end
 end
 f2d.deq; endrule

two values for epoch are sufficient!

3/14/2024 L07-27

Discussion
Epoch based solution kills one wrong-path
instruction at a time in the execute stage

It may be slow, but it is more robust in more

complex pipelines, if you have multiple stages
between fetch and execute or if you have
outstanding instruction requests to the iMem

It requires the Execute stage to set the pc and
epoch registers simultaneously which may result
in a long combinational path from Execute to

Fetch

3/14/2024 L07-28

Epoch mechanism is independent
of the sophisticated branch
prediction schemes that we will
study later

3/14/2024 L07-29

4-Cycle Harvard Processor
into a 2-stage pipeline

module mkProcHarvard3cycle(Empty);

 Code to instantiate pc, rf, mem, and registers that hold

 the state of a partially executed instruction

 rule doFetch if (state == Fetch);

 Code to initiate instruction fetch; hold pc in a reg;

 go to Decode

 rule doDecode if (state == Decode);

 let inst <- mem.resp;

 Code to decode and read the operands from rf; hold

 partially executed inst in a reg; go to execute

 rule doExecute if (state == Execute);

 Code to execute all instructions and initiate dMem request;

 hold the (partial) results in a reg; go to LoadWait

 rule doLoadWait if (state == LoadWait);

 (if Load then wait for the load value), update rf and pc,

 go to Fetch

endmodule

Insti

Insti+1

3/14/2024 L07-30

4-Cycle Harvard Processor
into a 2-stage pipeline

module mkProcHarvard3cycle(Empty);

 Code to instantiate pc, rf, mem, and registers that hold

 the state of a partially executed instruction

 rule doFetch if (state == Fetch);

 Code to initiate instruction fetch; hold pc in a reg;

 go to Decode

 endrule

 rule doDecode if (state == Decode);

 rule doExecute if (state == Execute); …

 rule doLoadWait if (state == LoadWait); …

endmodule

Initiate iMem req; let ppcF=nap(pcF); pcF<=ppcF;

 f2d.enq(Fetch2Decode{pc:pcF,ppc:ppcF,epoch:epoch});

let x=f2d.first; let pc=x.pc; let inEp=x.epoch;
 let inst <- iMem.res(); f2d.deq;
 if(inEp == epoch) // correct path instruction
 then ...decode, register fetch, set d2e, go to Execute
 else go to Decode

3/14/2024 L07-31

4-Cycle Harvard Processor
into a 2-stage pipeline

rule doDecode if (state == Decode); …

 rule doExecute if (state == Execute);

 Extract fields from d2e, execute and compute nextPC

 if prediction is correct

 then initiate memory op, set e2w, goto LoadWait

 else update pcF; epoch <= next(epoch); goto Decode

 rule LoadWait if (state == LoadWait);

 Extract fields from e2w;

 If necessary, wait for dMem response;

 update rf; goto Decode

Can doDecode, doExecute and LoadWait rules fire concurrently?

Can any of these rules fire concurrently with doFetch?

3/14/2024 L07-32

A 4-cycle, 2-stage pipeline –
detestable machine

PC Decode

Register File

Execute

Data

Memory

Inst

Memory

nap
f2d

Fetch
Execute
MemReq

InstiInsti+1

Decode,
RegisterFetch

e2w

f2d

MemRes
WriteBack

scoreboard

3/14/2024 L07-33

4-Cycle Harvard Processor
into a 2-stage pipeline

module mkProcHarvard2stagePipeline(Empty);

 instantiate pc, rf, mem, and registers that hold

 the state of a partially executed instruction

 rule doFetch if (state == Fetch);

 initiate instruction fetch; hold pc in a reg; go to Decode

 rule doDecode if (state == Decode);

 let inst <- mem.resp;

 decode inst and read operands from rf;

 hold partially executed inst in a reg; go to Execute

 rule doExecute if (state == Execute);

 Code to execute all instructions and initiate dMem request;

 hold the (partial) results in a reg; go to WB

 rule doWB if (state == WB);

 (if Load then wait for the load value), update rf and pc,

 go to Fetch

endmodule

Insti

Insti+1

3/14/2024 L07-34

4-Cycle Harvard Processor
into a 2-stage pipeline 1 (correct?)

module mkProcHarvard3cycle(Empty);

 instantiate pc, rf, mem, instantiate d2e, epoch and regs ..;

 rule doFetch if (stateFD == Fetch);

 Initiate iMem req(pc); ppc=nap(pc); pc<=ppc;

 f2d <= Fetch2Decode{pc:pc, ppc:ppc, epoch:epoch}

 stateFD <= Decode

 rule doDecode if (stateFD == Decode);

 let inst <- mem.resp; decode inst; read operands from rf;

 d2e.enq(Decode2Execute{pc:pc, ppc:ppc, epoch:epoch

 v1:rvalv1, v2:rval2}); stateFD <= Fetch

 rule doExecute if (stateEW == Execute);

 execute all instructions; if mem inst, initiate dMem req;

 hold the (partial) results in a reg; go to WB

 rule doWB if (stateEW == WB);

 (if Load then wait for the load value), update rf,

 (if needed, redirect pc;) go to Execute; endmodule

Insti

Insti+1

3/14/2024 L07-35

4-Cycle Harvard Processor
into a 2-stage pipeline 2a (correct?)

module mkProcHarvard3cycle(Empty);

 instantiate pc, rf, mem, instantiate d2e, registers…;

 rule doFetch if (stateFD == Fetch);

 Initiate inst fetch (pc); ppc=nap(pc); pc<=ppc;

 f2d <= Fetch2Decode{pc:pc, ppc:ppc, epoch:epoch}

 stateFD <= Decode

 rule doDecode if (stateFD == Decode);

 let inst <- mem.resp; // suppose the epoch has changed?

 let x=f2d; let pc=x.pc; let inEp=x.epoch;

 if(inEp == epoch) // correct path instruction

 then decode inst; read operands from rf;

 d2e.enq(Decode2Execute{pc:pc, ppc:ppc, epoch:epoch

 v1:rvalv1, v2:rval2});

 else // wrong path instruction and do nothing

 stateFD <= Fetch

Insti

Insti+1

3/14/2024 L07-36

4-Cycle Harvard Processor
into a 2-stage pipeline

 rule doFetch if (stateFD == Fetch); …

 rule doDecode if (stateFD == Decode); …

 rule doExecute if (stateEW == Execute);

 Extract fields from d2e, execute and compute nextPC

 if prediction is correct

 then

 initiate memory op; nextEp = epoch

 set e2w; stateEW <= WB;

 else correct pc; nextEp = next(epoch);

 rule doWB if (stateEW == WB);

 Extract fields from e2w;

 If necessary, wait for dMem response;

 update rf; update pc; update epoch
Are these rules correct?

2b (correct?)

Data Hazards!

3/14/2024 L07-37

4-Cycle Harvard Processor
into a 2-stage pipeline 2a (correct?)

 rule doFetch if (stateFD == Fetch);

 Initiate inst fetch (pc); ppc=nap(pc); pc<=ppc;

 f2d <= Fetch2Decode{pc:pc, ppc:ppc, epoch:epoch}

 stateFD <= Decode

 rule doDecode if (stateFD == Decode);

 let inst <- mem.resp;

 let x=f2d; let pc=x.pc; let inEp=x.epoch;

 if(inEp == epoch) // correct path instruction

 then decode inst; read operands from rf;

 d2e.enq(Decode2Execute{pc:pc, ppc:ppc,
epoch:epoch

 v1:rvalv1, v2:rval2});

 else // wrong path instruction and do nothing

 stateFD <= Fetch

 rule doExecute if (stateEW == Execute); …

 rule doWB if (stateEW == WB); …

Insti

Insti+1

If data-
hazard
then stall

3/14/2024 L07-38

Data Hazards

An instruction read a register
that is updated by another
recent instruction

3/14/2024 L07-39

pc rf

fetch execute

iMem dMem

f2d

epoch

Pipelining Decode and
Execute

pc rf

fetch decode

iMem dMem

f2d

epoch

d2e

execute

▪ Execute step probably has the longest propagation delay
(decode + register-file read + execute)

▪ Separate Execute into two stages:

▪ Decode and register-file-read

▪ Execute – including the initiation of memory instructions

▪ This introduces a new problem known as a Data Hazard,
that is, the register file, when it is read, may have stale
values

3/14/2024 L07-40

Three stage pipeline
data hazard

D LWEx

I1 must be stalled until I0 updates the register file, i.e.,
the data hazard disappears

The data hazard will disappear as pipeline drains

F

RF

I0 R1  Ld R2

I1 R4  R1+R2

I2 ...

I0I1

 t1
 t2 t3 t4 t5 t6 t7 t8 t9 t10

Fetch

Decode

Ex

LW

I0

I0

E1
W1

I1
I0

I0

I2
I1

I2

E2
W2

D2

mutually
exclusive

I1

I1
I2

I2

Complication: the stalled instruction may
be a wrong-path instruction

rd < wr

 need a mechanism to stall

3/14/2024 L07-41

Data Hazard
Data hazard arises when a source register of
the fetched instruction matches the destination

register of an instruction already in the pipeline

Both the source and destination registers must
be valid for a hazard to exist

3/14/2024 L07-42

Dealing with data hazards
(aka read-after-write (RAW) hazard)

Introduce a Scoreboard -- a data structure to keep track
of the destinations of the instructions in the pipeline
beyond the Decode stage

◼ Initially the scoreboard is empty

Compare sources of an instruction when it is decoded
with the destinations in the scoreboard

Stall the Decode from dispatching the instruction to
Execute if there is a RAW hazard

When the instruction is dispatched, enter its destination
in the scoreboard

When an instruction completes, delete its source from
the scoreboard

A stalled instruction will be unstalled when the RAW
hazard disappears. This is guaranteed to happen as the
pipeline drains.

3/14/2024 L07-43

Scoreboard

method insert(dst): inserts the destination of an
instruction or Invalid in the scoreboard when the
instruction is decoded

method search1(src): searches the scoreboard for a
data hazard, i.e., a dst that matches src

method search2(src): same as search1

method remove: deletes the oldest entry when an
instruction commits

scoreboard

search1 search2 insert remove

3/14/2024 L07-44

Two designs for scoreboard

A fifo of depth equal to
the number of pipeline
stages in Execute

Insert: enq (dst)

Remove: deq

Search: compare source
against each entry

Counter design takes less hardware, especially for deep
pipelines, and is more efficient because it avoids
searching each element of the fifo

versus

▪ One Boolean flag for each
register (Initially all False)

▪ Insert: set the flag for register
rd to True (block if it is
already True)

▪ Remove: set the flag for
register rd to False

▪ Search: Return the value of
the flag for the source register

3/14/2024 L07-45

pc rf

fetc
h

execute

iMem dMem

f2d

epoch

Scoreboard in the pipeline
pc rf

fetch decode

iMem dMem

f2d

epoch

d2e
execute

▪ If search by Decode does not see an instruction in scoreboard,
then that instruction must have updated the state

▪ Thus, when an instruction is removed from the scoreboard, its
updates to Register File must be visible to the subsequent
register reads in Decode

▪ remove and wr should happen simultaneously

▪ search, and rd1, rd2 should happen simultaneously

scoreboard remove

insertsearch

This will require a bypass register file

3/14/2024 L07-47

WAW hazards
Can a destination register name appear more
than once in the scoreboard ?

If multiple instructions in the pipeline can

update the register which the current
instruction wants to read, then the current
instruction has to read the update for the

youngest of those instructions; two solutions

◼ avoid WAW hazard by stalling the decode if the
destination is already present in sb

◼ Use a more complex sb and make sure a destination
stays in sb as long as necessary

3/14/2024 L07-48

Processor Performance

Pipelining lowers tClk. What about CPI?

CPI = CPIideal + CPIhazard

◼ CPIideal: cycles per instruction if no stall

CPIhazard contributors

◼ Data hazards: long operations, cache misses

◼ Control hazards: branches, jumps, exceptions

Cycle

Time

nInstructio

Cycles

Program

nsInstructio

Program

Time
=

CPI tClk

3/14/2024 L07-51

Bypassing

Bypassing is a technique to reduce the number of stalls
(that is, the number of cycles) by providing extra data
paths between the producer of a value and its consumer

Bypassing introduces new combinational paths, and this
can increase combinational delay (and hence the clock
period) and area

The effectiveness of a bypass is determined by how often
it is used

D E/LWF

RF

bypass

3/14/2024 L07-52

Normal vs Bypass Register File
module mkRFile(RFile);

 Vector#(32,Reg#(Data)) rfile <- replicateM(mkReg(0));

 method Action wr(RIndx rindx, Data data);

 if(rindx!=0) rfile[rindx] <= data;

 endmethod

 method Data rd1(RIndx rindx) = rfile[rindx];

 method Data rd2(RIndx rindx) = rfile[rindx];

endmodule
{rd1, rd2} < wr

Can we design a bypass register file so that:
 wr < {rd1, rd2}

3/14/2024 L07-53

Bypass Register File using EHR
module mkBypassRFile(RFile);

 Vector#(32,Ehr#(2, Data)) rfile <- replicateM(mkEhr(0));

 method Action wr(RIndx rindx, Data data);

 if(rindex!=0) (rfile[rindex])[0] <= data;

 endmethod

 method Data rd1(RIndx rindx) = (rfile[rindx])[1];

 method Data rd2(RIndx rindx) = (rfile[rindx])[1];

endmodule

wr < {rd1, rd2}

3/14/2024 L07-54

Bypass Register File
with external bypassing

module mkBypassRFile(BypassRFile);

 RFile rf <- mkRFile;
 Fifo#(1, Tuple2#(RIndx, Data))
 bypass <- mkBypassSFifo;
 rule move;
 begin rf.wr(bypass.first); bypass.deq end;
 endrule

 method Action wr(RIndx rindx, Data data);

 if(rindex!=0) bypass.enq(tuple2(rindx, data));

 endmethod

 method Data rd1(RIndx rindx) =

 return (!bypass.search1(rindx)) ? rf.rd1(rindx)

 : bypass.read1(rindx);

 method Data rd2(RIndx rindx) =

 return (!bypass.search2(rindx)) ? rf.rd2(rindx)

 : bypass.read2(rindx);

endmodule
wr < {rd1, rd2}

rf

move

rd

3/14/2024 L07-55

A correctness issue

If the search by Decode does not see an
instruction in the scoreboard, then its effect

must have taken place. This means that any
updates to the register file by that instruction
must be visible to the subsequent register

reads 

◼ remove and wr should happen atomically

◼ search and rd1, rd2 should happen atomically

Fetch
Decode

Execute
WB

d2e

redirect

Register File

Scoreboard

removesearch insert

wrrd1 rd2

3/14/2024 L07-56

Concurrency and Performance
Suppose: doFetch < doExecute

For correctness:
◼ rf: rd < wr (normal rf)
◼ sb: {search, insert} < remove
◼ d2e: enq {<, CF} {deq, first} (CF Fifo)

performance ?
◼ Dead cycle after each misprediction
◼ Dead cycle after each RAW hazard

Bypass FIFO
does not make
sense here

Fetch
Decode

Execute
WB

d2e

redirect

Register File

Scoreboard

removesearch insert

wrrd1 rd2

3/14/2024 L07-57

Concurrency and Performance
suppose: doExecute < doFetch

For correctness;
◼ rf: wr < rd (bypass rf)
◼ sb: remove < {search, insert}
◼ d2e: {first, deq} {<, CF} enq (pipelined or CF Fifo)

Also, no dead cycle after a misprediction

Fetch
Decode

Execute
WB

d2e

redirect

Register File

Scoreboard

removesearch insert

wrrd1 rd2

To avoid a stall due to a RAW hazard between successive
instructions
◼ sb: remove ? search
◼ rf: wr ? rd

<
< (bypass rf)

3/14/2024 L07-58

Summary
Instruction pipelining requires dealing with
control and data hazards

Speculation is necessary to deal with control

hazards

Data hazards are avoided by withholding
instructions in the decode stage until the hazard

disappears

Concurrency and performance issues are subtle

◼ For instance, bypassing necessarily increases
combinational path lengths which can slow down the
clock

3/14/2024 L07-59

Non-atomic prediction
correction

3/14/2024 L07-60

Decoupled Fetch and Execute

<inst, pc, ppc,
epoch>

<corrected pc,
new epoch>

In decoupled systems a subsystem reads and
modifies only local state atomically

◼ In our solution, pc and epoch are read by both rules

Properly decoupled systems permit greater
freedom in independent refinement of
subsystems

Fetch Execute

3/14/2024 L07-61

A decoupled solution using
epochs

Add fEpoch and eEpoch registers to the processor
state; initialize them to the same value

The epoch changes whenever Execute detects

the pc prediction to be wrong. This change is
reflected immediately in eEpoch and eventually in
fEpoch via a message from Execute to Fetch

Associate fEpoch with every instruction when it is
fetched

In the execute stage, reject, i.e., kill, the
instruction if its epoch does not match eEpoch

fEpoch eEpochFetch Execute

3/14/2024 L07-62

Control Hazard resolution
A robust two-rule solution

PC

Inst

Memory

Decode

Register File

Execute

Data

Memory

+4
f2d

FIFO

FIFO

re
d
ir

e
c
t

Execute sends information about
the target pc to Fetch, which
updates fEpoch and pc whenever
it examines the redirect (PC) fifo

fE
p
o
c
h

e
E
p
o
c
h

3/14/2024 L07-63

Two-stage pipeline
Decoupled code structure

module mkProc(Proc);

 Fifo#(Fetch2Execute) f2d <- mkFifo;
 Fifo#(Addr) redirect <- mkFifo;
 Reg#(Bool) fEpoch <- mkReg(False);
 Reg#(Bool) eEpoch <- mkReg(False);

 rule doFetch;
 let inst = iMem.req(pcF);
 ...

 f2d.enq(... inst ..., fEpoch);
 endrule

 rule doExecute;

 if(inEp == eEpoch) begin
 Decode and execute the instruction; update state;

 In case of misprediction, redirect.enq(correct pc);
 end
 f2d.deq;
 endrule

endmodule
3/14/2024 L07-64

The Fetch rule
rule doFetch;

 let inst = iMem.req(pcF);

 if(redirect.empty)

 begin
 let newPcF = nap(pcF);

 pcF <= newPcF;
 f2d.enq(Fetch2Execute{pc: pcF, ppc: newPcF,

 inst: inst, epoch: fEpoch});

 end

 else

 begin
 fEpoch <= !fEpoch; pcF <= redirect.first;

 redirect.deq;

 end
endrule

Notice: In case of PC redirection,
nothing is enqueued into f2d

3/14/2024 L07-65

The Execute rule
rule doExecute;

let x = f2d.first;

 let inst = x.inst; let pc = x.pc; let inEp = x.epoch;
if(inEp == eEpoch) begin
 ...decode, register fetch, exec, memory op,

 rf update nextPC ...

 if (x.ppc != nextPC) begin redirect.enq(eInst.addr);

 eEpoch <= !inEp; end

 end

 f2d.deq;

endrule

Can doFetch and doExecute execute concurrently?

yes, assuming CF FIFOs

3/14/2024 L07-66

	Slide 1: Constructive Computer Architecture: Pipelined Processors
	Slide 2: Ordre du jour
	Slide 3: Las Meninas (The Maids of Honour) Diego Velázquez 1656
	Slide 4: Different lighting
	Slide 5: It is big! Museo del Prado, Madrid
	Slide 6: Engages the viewer
	Slide 7: Picasso
	Slide 8: Deconstructing & Constructing: Las Meninas
	Slide 9: Infanta Margarita
	Slide 10: Deconstructing & Constructing: Las Meninas – Infanta Margarita
	Slide 11: Deconstructing & Constructing: Las Meninas
	Slide 12: Deconstructing & Constructing: Las Meninas
	Slide 13: Deconstructing & Constructing: Las Meninas
	Slide 14: Why?
	Slide 15: Let’s build detestable pipelined processors!
	Slide 16: Multicycle Processor: Analysis
	Slide 17: Processor pipelines
	Slide 18: New problems in pipelining instructions (over arithmetic pipelines)
	Slide 19: Plan
	Slide 20: Control hazard
	Slide 21: Timing diagrams and bubbles
	Slide 22: How do we detect a misprediction?
	Slide 23: What does it mean to squash a partially executed instruction?
	Slide 24: Killing fetched instructions
	Slide 25: Epoch: a method to manage control hazards
	Slide 26: An epoch-based solution
	Slide 27: An epoch-based solution For concurrency, turn pcF in an EHR
	Slide 28: Discussion
	Slide 29: Epoch mechanism is independent of the sophisticated branch prediction schemes that we will study later
	Slide 30: 4-Cycle Harvard Processor into a 2-stage pipeline
	Slide 31: 4-Cycle Harvard Processor into a 2-stage pipeline
	Slide 32: 4-Cycle Harvard Processor into a 2-stage pipeline
	Slide 33: A 4-cycle, 2-stage pipeline – detestable machine
	Slide 34: 4-Cycle Harvard Processor into a 2-stage pipeline
	Slide 35: 4-Cycle Harvard Processor into a 2-stage pipeline 1 (correct?)
	Slide 36: 4-Cycle Harvard Processor into a 2-stage pipeline 2a (correct?)
	Slide 37: 4-Cycle Harvard Processor into a 2-stage pipeline
	Slide 38: 4-Cycle Harvard Processor into a 2-stage pipeline 2a (correct?)
	Slide 39: Data Hazards
	Slide 40: Pipelining Decode and Execute
	Slide 41: Three stage pipeline data hazard
	Slide 42: Data Hazard
	Slide 43: Dealing with data hazards (aka read-after-write (RAW) hazard)
	Slide 44: Scoreboard
	Slide 45: Two designs for scoreboard
	Slide 47: Scoreboard in the pipeline
	Slide 48: WAW hazards
	Slide 51: Processor Performance
	Slide 52: Bypassing
	Slide 53: Normal vs Bypass Register File
	Slide 54: Bypass Register File using EHR
	Slide 55: Bypass Register File with external bypassing
	Slide 56: A correctness issue
	Slide 57: Concurrency and Performance Suppose: doFetch < doExecute
	Slide 58: Concurrency and Performance suppose: doExecute < doFetch
	Slide 59: Summary
	Slide 60: Non-atomic prediction correction
	Slide 61: Decoupled Fetch and Execute
	Slide 62: A decoupled solution using epochs
	Slide 63: Control Hazard resolution A robust two-rule solution
	Slide 64: Two-stage pipeline Decoupled code structure
	Slide 65: The Fetch rule
	Slide 66: The Execute rule

