N
%

Constructive Computer Architecture:

Pipelined Processors

Thomas Bourgeat — EPFL

Slides prepared with Arvind (6.192 — Spring
23 MIT)

N

3/14/2024 LO7-1

Ordre du jour
@Entrée: Pipelining
#Plat: Pipelining
#Dessert: Pipelining

So pipelining left and right, But first,
why so much pipelining?

3/14/2024 LO7-2

Las Meninas (The Maids of
Honour) Diego Veldzquez 1656

N

L

By some
measures,
the most
important
painting in
the Western
art history

Portrait of

8l Infanta

l Margarita, the
daughter of
e King Philip 1V,
in Royal
Alcazar, Madrid

3/14/2024 LO19-3

Different lighting

3/14/2024

It is big!

Museo del Prado, Madrid

N

L

!

3/14/2024 R L019-5

lIEWeEr

>
),
c
J—
)
Q
O)
(O
O)
C
LL]

3/14/2024

Picasso

" & Picasso had left Spain because of the Spanish
civil war in nineteen thirties and had never
seen Las Meninas

In 1956, at the 300t anniversary of Diego
Velazquez’'s Las Meninas, Picasso revisited
Madrid to see the painting

The story goes he came back and locked
himself in his studio for three months and
painted 58 versions of it — deconstructing and
constructing - not copying
= Can be seen at Museo Picasso in Barcelona

N

3/14/2024 LO19-7

Deconstructing & Constructing:
Las Meninas

N

3/14/2024 L019-8

N

Infanta Margarita

Perplexed? Distracted by sun light?

3/14/2024 LO19-9

Deconstructing & Constructing:
Las Meninas - Infanta Margarita

N
\

3/14/2024 LO19-10

Deconstructing & Constructing:
Las Meninas

N

3/14/2024 LO19-11

Deconstructing & Constructing:
Las Meninas

N

3/14/2024 LO19-12

Deconstructing & Constructing:
Las Meninas

N

3/14/2024 LO19-13

Why?

®Picasso was 75 and very aware of
his Spanish heritage. Was he
trying to improve upon the
master’s work?

Picasso reportedly said:

“I would say..what if you put them a little more to the right or left?
I'll try to do it my way, forgetting about Velazquez. The test would
surely bring me to modify or change the light because of having
changed the position of a character. So, little by little, that would be
a detestable Meninas for a traditional painter, but would be my
Meninas.”

N

3/14/2024 LO19-14

Let’s build detestable
pipelined processors!

N

3/14/2024 LO7-15

Multicycle Processor: Analysis

Load Instructions Register File

N

L

Fetch xecute /__\

PC » Decode |Execute

N
/\ -
A 4 A 4

Inst Lot of unused hardwarein any Data
Memory| |given clock cycle!l = pipeline Memory

NepmpeoT

#® Assuming 20% load instructions, and memory latency
of one, the average number of cycles per instruction:
= 2x.8 +3x.2=22 higher memory latency will make this

number much worse
3/14/2024 L07-16

Processor pipelines

Pipelining a processor encompasses many core
challenges of computer architecture
s Stringent correctness requirements

s Requires speculative execution of instructions to
pipeline at all!

s Requires dealing with a variety of feedback in the
pipeline

N

O There are simple pipelined cores, there are
also tremendously sophisticated pipelined cores

3/14/2024 LO7-17

New problems in pipelining instructions
(over arithmetic pipelines)

N
\

Inst; 4

Inst;

RegisterFile

Decode

Inst
Memory

Execute

Inst, 4

#® Control hazard: pc for Inst, 4 is not known until at least
Inst;is decoded. So which instruction should be fetched?
= Solution: Speculate and squash later if the prediction is wrong

#® Data hazard: Inst,may be data dependent on Inst;_;, and
thus, it must wait for the effect of Inst,_; on the state of the

3/14/2024

machine (pc, rf, dMem) to take place

= Solution: Stall instruction Inst; until the dependency is resolved

= Number of stalls can be reduced by bypassing, that is by
providing additional datapaths

LO7-18

Plan

1. Develop a two-stage pipeline by providing a solution
for control hazards

2. Develop a two-stage pipeline by providing a
solution for data-hazard

3. Develop a three-stage pipeline by providing a solution
for data hazards and control hazards

N

To keep the explanations simple, we will first show
the solutions with magic memory and then discuss
pipelining multicycle processors

3/14/2024 LO7-19

N

3/14/2024

pC

Control hazard

rf

WlA

WO e

T

IMem

dMem

We will offer a solution
that is independent of
how many cycles each
stage takes

Fetch stage initiates instruction fetch and sends the pc to
Execute stage via f2d. It speculatively updates pc to pc+4

Execute stage picks up instruction from f2d and executes
it. It may take one or more cycles to do this

These two stages operate independently except in case of
a branch misprediction when Execute redirects the pc to
the correct pc. All "wrong path” instructions have to be

squashed

LO7-20

Timing diagrams and
bubbles
% F _ﬂ_.

To- L1 Lo s Ly -To-Lg-L7-Lg-Lg-Tp Execution of
Fetch I, I I, I, IO' Il, Iz, I3,

I I I I :
EX ° ' - ’ only I, is a load
LW ’ instruction

F —'|— EX —'D—' LW Two-stage Pipeline

rediction
P T ettty t, ts te ty Ty to toe

N

Ex F—l—1{ LW Multicycle Processor

Fetch o i s bubble: Ex/LW Suppose I is a

EX A e I '\3 can hold only ohe branch instruction

LW ? instruction which jumps to I,

Fetch I, I, instead of I4

Ex }e .

LW Is ~_ If squashing takes more than
speculation squash one cycle, then I, will get

further delayed
5
3/14/2024 correct: L07-21

How do we detect a
misprediction?

We initiate a fetch for the instruction at pc,
and make a prediction for the next pc (ppc)

The instruction at pc carries the prediction
(ppc) with it as it flows through the pipeline

At the Execute stage we know the real next
pc. It is a misprediction if the next pc # ppc

N

3/14/2024

LO7-22

What does it mean to squash a
partially executed instruction?

The instruction should have no effect on the
processor state
= must not update register file or pc
= Mmust not launch a Store

These conditions are easy to ensure in our
two-stage processor because there is at most
one instruction in the Ex/LW state

N

3/14/2024 LO7-23

Killing fetched instructions

In a simple 2-stage design, all the mispredicted
instructions were present in f2d. So, the Execute
stage can atomically:

s Clear f2d
s Set pc to the correct target
= Hmmm, actually, can it clear f2d?

N

In highly pipelined machines there can be
multiple mispredicted and partially executed
instructions in the pipeline; it generally takes
more than one cycle to kill all such instructions

Need a more general solution then clearing the f2d FIFO

3/14/2024 LO7-24

Epoch: a method to manage

control hazards

g
N
epoch
P rf
targetPC l
_EE 72 execut
C > >
Next address pl I \n?p/ g
predictor, ' / |
e.g., pc+4 —— inst dMem
IMem

#® Add an epoch register to the processor state

#® The Execute stage changes the epoch whenever the pc
prediction is wrong and sets the pc to the correct value

4

@

The Fetch stage associates the current epoch to every
instruction sent to the Execute stage

The epoch of the instruction is examined when it is
ready to execute. If the processor epoch has changed
the instruction is thrown away

3/14/2024

LO7-25

“An epoch-based solution

\Jrule doFetch ;

let instF=iMem.req(pcF);

let ppcF=nap(pcF); pcF<=ppcF;

f2d.enqg(Fetch2Decode{pc:pcF,ppc:ppcF, epoch:epoch,
inst:instF});

Can these rules execute concurrently ?

endrule
rule doExecute;

let x=f2d.first; let pc=x.pc; let inEp=x.epoch;

let inst = x.inst;

if(inEp == epoch) begin

...decode, register fetch, exec, memory op,
rf update nextPC ...
if (x.ppc != nextPC) begin pcF <= elnst.addr;
epoch <= next(epoch); end

end
f2d.deq; endrule How many epoch values are sufficient?

3/14/2024 LO7-26

An epoch-based solution
For concurrency, turn pcF in an EHR

KVrule doFetch ;

let instF=iMem.req(pcF[0]);

let ppcF=nap(pcF[0]); pcF[@]<=ppcF;

f2d.enq(Fetch2Decode{pc:pcF[@], ppc:ppcF,epoch:epoch,
inst:instF});

endrule
rule doExecute;
let x=f2d.first; let pc=x.pc; let inEp=x.epoch;
let inst = x.inst;
if(inEp == epoch) begin
...decode, register fetch, exec, memory op,
rf update nextPC ...
if (x.ppc != nextPC) begin pcF[1] <= elnst.addr;
epoch <= next(epoch); end
end
f2d.deq; endrule

two values for epoch are sufficient!

3/14/2024 LO7-27

Discussion

K Epoch based solution kills one wrong-path
instruction at a time in the execute stage

It may be slow, but it is more robust in more
complex pipelines, if you have multiple stages
between fetch and execute or if you have
outstanding instruction requests to the iMem

It requires the Execute stage to set the pc and
epoch registers simultaneously which may result
in a long combinational path from Execute to
Fetch

N

3/14/2024 LO7-28

N
%

Epoch mechanism is independent
of the sophisticated branch

prediction schemes that we will
study later

4

3/14/2024 LO7-29

4-Cycle Harvard Processor
into a 2-stage pipeline

“module mkProcHarvard3cycle(Empty);
Code to instantiate pc, rf, mem, and registers that hold
the state of a partially executed instruction
rule doFetch if (state == Fetch);
Code to initiate instruction fetch; hold pc in a reg;

N

In Sti+1 go_to Decode

rule doDecode if (state == Decode);
let inst <- mem.resp;
Code to decode and read the operands from rf; hold
partially executed inst in a reg; go to execute

Inst;

rule doExecute if (state == Execute);
Code to execute all instructions and initiate dMem request;
hold the (partial) results in a reg; go to LoadWait

rule doLoadWait if (state == LoadWait);

(if Load then wait for the load value), update rf and pc,

go to Fetch

endmodule

3/14/2024

LO7-30

4-Cycle Harvard Processor

into a 2-stage pipeline

N

“module mkProcHarvard3cycle(Empty);
Code to instantiate pc, rf, mem, and registers that hold

the state of a partially executed instruction
rule doFetch df—state—ma—tatchi=-
Initiate iMem req; let ppcF=nap(pcF); pcF<=ppcF;
f2d.enq(Fetch2Decode{pc:pcF,ppc:ppcF,epoch:epoch});
endrule

rule doDecode if (state == Decode);

let x=f2d.first; let pc=x.pc; let inEp=x.epoch;

let inst <- iMem.res(); f2d.deq;

if(inEp == epoch) // correct path instruction
then ...decode, register fetch, set d2e, go to Execute
else go to Decode

rule doExecute if (state == Execute); ..
rule doLoadWait if (state == LoadWait); ..

3/14/208Ndmodule 107:31

4-Cycle Harvard Processor
into a 2-stage pipeline

rule doDecode if (state == Decode); ..

rule doExecute if (state == Execute);
Extract fields from d2e, execute and compute nextPC
if prediction is correct
then initiate memory op, set e2w, goto LoadWait
else update pcF; epoch <= next(epoch); goto Decode

N
\

rule LoadWait if (state == LoadWait);
Extract fields from e2w;
It necessary, wait for dMem response;
update rf; goto Decode

Can doDecode, doExecute and LoadWait rules fire concurrently?

Can any of these rules fire concurrently with doFetch?

3/14/2024 LO7-32

A 4-cycle, 2-stage pipeline -
detestable machine o~

Fetch Decode, MemReq WriteBack
RegisterFetch

N

Register File
InStH_]_ 41 InSti T

A

PC fad| | Decode Execute[—e2w

Inst YVY Data
Memory scoreboard Memory

5
€
L E

3/14/2024 LO7-33

4-Cycle Harvard Processor

into a 2-stage pipeline

N

“module mkProcHarvard2stagePipeline(Empty);
instantiate pc, rf, mem, and registers that hold

the state of a partially executed instruction

rule doFetch if (state == Fetch);
Inst. 4 initiate instruction fetch; hold pc in a reg; go to Decode
rule doDecode if (state == Decode);

let inst <- mem.resp;
decode inst and read operands from rf;
hold partially executed inst in a reg; go to Execute

rule doExecute if (state == Execute);
Code to execute all instructions and initiate dMem request;
hold the (partial) results in a reg; go to WB

rule doWB if (state == WB);

(if Load then wait for the load value), update rf and pc,

go to Fetch

3/14/208Ndmodule L07-34

Inst;

4-Cycle Harvard Processor
into a 2-stage pipeline 1 (correct?)

“module mkProcHarvard3cycle(Empty);
instantiate pc, rf, mem, instantiate d2e, epoch and regs ..;
rule doFetch if (stateFD == Fetch);
Initiate iMem req(pc); ppc=nap(pc); pc<=ppc;
Inst. f2d <= Fetch2Decode{pc:pc, ppc:ppc, epoch:epoch}
stateFD <= Decode
rule doDecode if (stateFD == Decode);
let inst <- mem.resp; decode inst; read operands from rf;
d2e.enq(Decode2Execute{pc:pc, ppc:ppc, epoch:epoch
vl:rvalvl, v2:rval2}); stateFD <= Fetch
rule doExecute if (stateEW == Execute);

N

execute all instructions; if mem inst, initiate dMem req;
hold the (partial) results in a reg; go to WB
rule doWB if (stateEW == WB);
(if Load then wait for the load value), update rf,
3/14/2024 (1f needed, redirect pc;) go to Execute; endmodule

Inst;

LO7-35

4-Cycle Harvard Processor

into a 2-stage pipeline 2a (correct?)

N

“module mkProcHarvard3cycle(Empty);

instantiate pc, rf, mem, instantiate d2e, registers..;

rule doFetch if (stateFD == Fetch);
Initiate inst fetch (pc); ppc=nap(pc); pc<=ppc;

Inst. f2d <= Fetch2Decode{pc:pc, ppc:ppc, epoch:epoch}
stateFD <= Decode

rule doDecode if (stateFD == Decode);
let inst <- mem.resp; // suppose the epoch has changed?
let x=f2d; let pc=x.pc; let inEp=x.epoch;

if(inEp == epoch) // correct path instruction

then decode inst; read operands from rf;
d2e.enq(Decode2Execute{pc:pc, ppc:ppc, epoch:epoch
vl:rvalvl, v2:rval2});

else // wrong path instruction and do nothing
stateFD <= Fetch

3/14/2024 Inst; L07-36

4-Cycle Harvard Processor

into a 2-stage pipeline 2b (correct?)

L

N

rule doFetch if (stateFD == Fetch); ..
rule doDecode if (stateFD == Decode); ..
rule doExecute if (stateEW == Execute);
Extract fields from d2e, execute and compute nextPC

if prediction is correct
then
initiate memory op; nextEp = epoch
set e2w; stateEW <= WB;
else correct pc; nextEp = next(epoch);
rule doWB if (stateEW == WB);
Extract fields from e2w;

If necessary, wait for dMem response;

te rf; update pc

update epoch
Ar'e these rules correct? © B

Data Hazards!

3/14/2024 LO7-37

4-Cycle Harvard Processor

into a 2-stage pipeline 2a (correct?)

L

N

rule doFetch if (stateFD == Fetch);
Initiate inst fetch (pc); ppc=nap(pc); pc<=ppcC;

f2d <= Fetch2Decode{pc:pc, ppc:ppc, epoch:epoch}
stateFD <= Decode

Inst,, rule doDecode if (stateFD == Decode);

let inst <- mem.resp;

let x=f2d; let pc=x.pc; let inEp=x.epoch; If data-
if(inEp == epoch) // correct path instruction hazard
then decode insts- read operands from rf; then stall

d2e.enqg(Decode2Execute{pc:pc, ppc:ppc,
epoch:epoch

vl:rvalvl, v2:rval2});
else // wrong path instruction and do nothing
stateFD <= Fetch
rule doExecute if (stateEW == Execute); ..

rule doWB if (stateEW == WB); ..
3/14/2024 L07-38

Inst;

\/

Data Hazards

3/14/2024

An instruction read a register
that is updated by another
recent instruction

N

LO7-39

Pipelining Decode and
JExecute

pc| | epoch J rf

N

IMem dMem

\ > < A »

= Execute step probably has the longest propagation delay
(decode + register-file read + execute)
= Separate Execute into two stages:
Decode and register-file-read
Execute - including the initiation of memory instructions
= This introduces a new problem known as a Data Hazard,
that is, the register file, when it is read, may have stale
values

3/14/2024 LO7-40

Three stage pipeline

data hazard

%
F
IZ
I, Rl < Ld R2
I, R4 < R1+R2
IZ

F{F: rd < w
/ t |
D ’ 1 Ex ——] w
1, Lo
0,6 §; t, € T €, T3 T4 Ty
Fetch I, I, I,
Decode Ip I, ==» 1, I,
f\ o
mUTUG”y<Lw

exclusive

I, must be stalled until I, updates the register file, i.e.,
the data hazard disappears = need a mechanism to stall

The data hazard will disappear as pipeline drains
Complication: the stalled instruction may

3/14/2024

be a wrong-path instruction

LO7-41

Data Hazard

Data hazard arises when a source register of
the fetched instruction matches the destination
register of an instruction already in the pipeline

Both the source and destination registers must
be valid for a hazard to exist

N

3/14/2024 LO7-42

Dealing with data hazards

N

@

® @ * @

3/14/2024

(aka read-after-write (RAW) hazard)

Introduce a Scoreboard -- a data structure to keep track
of the destinations of the instructions in the pipeline
beyond the Decode stage

= Initially the scoreboard is empty

Compare sources of an instruction when it is decoded
with the destinations in the scoreboard

Stall the Decode from dispatching the instruction to
Execute if there is a RAW hazard

When the instruction is dispatched, enter its destination
in the scoreboard

When an instruction completes, delete its source from
the scoreboard
A stalled instruction will be unstalled when the RAW
hazard disappears. This is guaranteed to happen as the
pipeline drains.

LO7-43

N

Scoreboard

3/14/2024

N l

searchl | | search2 | | insert | | remove
scoreboard

method insert(dst): inserts the destination of an
instruction or Invalid in the scoreboard when the
instruction is decoded

method search1(src): searches the scoreboard for a
data hazard, i.e., a dst that matches src

method search2(src): same as searchl

method remove: deletes the oldest entry when an
instruction commits

LO7-44

Two designs for scoreboard

N

L

Versus 3 -

A fifo of depth equal to = One Boolean flag for each

the number of pipeline register (Initially all False)
stages in Execute = Insert: set the flag for register
Insert: enq (dst) rd to True (block if it is
& Remove: deg already True)
& Search: compare source | |* Remove: set the flag for

register rd to False

= Search: Return the value of
the flag for the source register

against each entry

Counter design takes less hardware, especially for deep
pipelines, and is more efficient because it avoids
searching each element of the fifo

3/14/2024 LO7-45

Scoreboard in the pipeline

pC epoch J rf

{Fercn)T Gecodey] Torecusg
f2d d2e

search\.insert

/\

1Mem scoreboard |tamove dMem

= If search by Decode does not see an instruction in scoreboard,
then that instruction must have updated the state

= Thus, when an instruction is removed from the scoreboard, its
updates to Register File must be visible to the subsequent
register reads in Decode

remove and wr should happen simultaneously
search, and rdl, rd2 should happen simultaneously

This will require a bypass register file

3/14/2024 LO7-47

WAW hazards

Can a destination register name appear more
than once in the scoreboard ?

If multiple instructions in the pipeline can
update the register which the current
instruction wants to read, then the current
instruction has to read the update for the
youngest of those instructions; two solutions

= avoid WAW hazard by stalling the decode if the
destination is already present in sb

= Use a more complex sb and make sure a destination
stays in sb as long as necessary

N

3/14/2024 LO7-48

Processor Performance

Time _ Instructions Cycles Time
Program Program Instruction Cycle

CPI Lok

N

Pipelining lowers t,. What about CPI?
@ CPI — CPIideaI + CPIhazard

s CPILg.,: cycles per instruction if no stall

CPI, ,,..q CcOntributors
= Data hazards: long operations, cache misses
= Control hazards: branches, jumps, exceptions

3/14/2024 LO7-51

Bypassing

N

#® Bypassing is a technique to reduce the number of stalls
(that is, the number of cycles) by providing extra data
paths between the producer of a value and its consumer

Bypassing introduces new combinational paths, and this
can increase combinational delay (and hence the clock
period) and area

#® The effectiveness of a bypass is determined by how often
it is used

3/14/2024 LO7-52

Normal vs Bypass Register File

“module mkRFile(RFile);
Vector#(32,Reg#(Data)) rfile <- replicateM(mkReg(Q));

N

method Action wr(RIndx rindx, Data data);
if(rindx!=0) rfile[rindx] <= data;
endmethod
method Data rdl(RIndx rindx)
method Data rd2(RIndx rindx)
endmodule

rfile[rindx];
rfile[rindx];

{rd1l, rd2} < wr

Can we design a bypass register file so that:
wr < {rdl, rd2}

3/14/2024 LO7-53

Bypass Register File using EHR

“module mkBypassRFile(RFile);
Vector#(32,Ehr#(2, Data)) rfile <- replicateM(mkEhr(0));

method Action wr(RIndx rindx, Data data);
if(rindex!=0) (rfile[rindex])[@] <= data;
endmethod
method Data rdl(RIndx rindx)
method Data rd2(RIndx rindx)
endmodule

(rfile[rindx])[1];
(rfile[rindx])[1];

wr < {rdl, rd2}

3/14/2024 LO7-54

Bypass Register File

with external bypassing

L/
module mkBypassRFile(BypassRFile);
RFile rf <- mkRFile;

Fifo#(1l, Tuple2#(RIndx, Data))
bypass <- mkBypassSFifo;

N

rule move;
begin rf.wr(bypass.first); bypass.deq end;
endrule
method Action wr(RIndx rindx, Data data);
if(rindex!=0) bypass.enq(tuple2(rindx, data));
endmethod
method Data rdl(RIndx rindx) =
return (!bypass.searchl(rindx)) ? rf.rdl(rindx)
: bypass.readl(rindx);
method Data rd2(RIndx rindx) =
return (!bypass.search2(rindx)) ? rf.rd2(rindx)

: bypass.read2(rindx); wr < {rdl, rd2}

endmodule
3/14/2024 LO7-55

A correctness issue

Register File
redirect

f\

insert
Scoreboard

If the search by Decode does not see an
instruction in the scoreboard, then its effect
must have taken place. This means that any
updates to the register file by that instruction
must be visible to the subsequent register
reads =
= remove and wr should happen atomically

= search and rd1, rd2 should happen atomically
3/14/2024 LO7-56

Concurrency and Performance
Su DPOSE: doFetch < doExecute

Register File

/\

redirect
. Bypass FIFO
jnsert does not make
Scoreboard sense here
#® For correctness:
s [f: rd < wr (normal #f)
= Sb: {search, insert} < remove

s d2e: enqg {<, CF} {deq, first} (CF Fifo)

#® performance?
= Dead cycle after each misprediction s
s Dead cycle after each RAW hazard

A

3/14/2024 LO7-57

Concurrency and Performance
SUPPOSE. doExecute < doFetch

p
T Register File
Wr
redirect
Execute
~[1T] > W
search\xjnsert d2e ,femove
Scoreboard
For correctness;
n f: wr < rd (bypass rf)
s Sb: remove < {search, insert}

= d2e: {first, deq} {<, CF} enqg (pipelined or CF Fifo)
To avoid a stall due to a RAW hazard between successive

instructions

= Sb: remove < search

s If: wr < rd (bypass rf)
Also, no dead cycle after a misprediction

3/14/2024 LO7-58

Summary

Instruction pipelining requires dealing with
control and data hazards

Speculation is necessary to deal with control
hazards

Data hazards are avoided by withholding
instructions in the decode stage until the hazard
disappears

Concurrency and performance issues are subtle

= For instance, bypassing necessarily increases
combinational path lengths which can slow down the
clock

N

3/14/2024 LO7-59

Non-atomic prediction
correction

N

3/14/2024 LO7-60

Decoupled Fetch and Execute

N

<corrected pc,
new epoch>

1¢ <

Fetch Execute

»l
»

»
>

<inst, pc, ppc,
epoch>

In decoupled systems a subsystem reads and
modifies only local state atomically

= In our solution, pc and epoch are read by both rules

Properly decoupled systems permit greater
freedom in independent refinement of
subsystems

3/14/2024 LO7-61

A decoupled solution using
epochs

Fetch |fEpoch eEpoch Execute

N

Add fEpoch and eEpoch registers to the processor
state; initialize them to the same value

The epoch changes whenever Execute detects
the pc prediction to be wrong. This change is
reflected immediately in eEpoch and eventually in
fEpoch via a message from Execute to Fetch

Associate fEpoch with every instruction when it is
fetched

In the execute stage, reject, i.e., kill, the
instruction if its epoch does not match eEpoch

3/14/2024 LO7-62

Control Hazard resolution

A robust two-rule solution

)
N
FIFO S _ _
» 2 Register File
O L
2 2 .
5 A 1
f2d Decode '|Execute

FIFO

Inst |Execute sends information about | Data
Memory the target pc to Fetch, which Memory
updates fEpoch and pc whenever
it examines the redirect (PC) fifo

3/14/2024 LO7-63

Two-stage pipeline
DeCO L pled code structure

module mkProc(Proc);

Fifo#(Fetch2Execute) f2d <- mkFifo;
Fifo#(Addr) redirect <- mkFifo;

Reg#(Bool) fEpoch <- mkReg(False);
Reg#(Bool) eEpoch <- mkReg(False);

N

rule doFetch;
let inst = iMem.req(pcF);

f2d.enq(... inst ..., fEpoch);
endrule
rule doExecute;
if(inEp == eEpoch) begin
Decode and execute the instruction; update state;

In case of misprediction, redirect.enqg(correct pc);
end
f2d.deq;
endrule

endmodule
3/14/2024 LO7-64

The Fetch rule

Jrule doFetch;
let inst = iMem.req(pcF);
if(redirect.empty)
begin
let newPcF = nap(pcF);

pcF <= newPcF;
f2d.enq(Fetch2Execute{pc: pcF, ppc: newPcF,

inst: inst, epoch: fEpoch});

N

end
else

begin
fEpoch <= !fEpoch; pcF <= redirect.first;

redirect.deq;

endf;g Notice: In case of PC redirection,
) hothing is enqueued into f2d

3/14/2024 LO7-65

The Execute rule

Jrule doExecute;
let x = f2d.first;
let inst = x.inst; let pc = x.pc; let inEp = x.epoch;
if(inEp == eEpoch) begin
...decode, register fetch, exec, memory op,

N

rf update nextPC ...
if (x.ppc != nextPC) begin redirect.enq(eInst.addr);

eEpoch <= !inEp; end
end
f2d.deq;
endrule

Can doFetch and doExecute execute concurrently?

yes, assuming CF FIFOs

3/14/2024 LO7-66

	Slide 1: Constructive Computer Architecture: Pipelined Processors
	Slide 2: Ordre du jour
	Slide 3: Las Meninas (The Maids of Honour) Diego Velázquez 1656
	Slide 4: Different lighting
	Slide 5: It is big! Museo del Prado, Madrid
	Slide 6: Engages the viewer
	Slide 7: Picasso
	Slide 8: Deconstructing & Constructing: Las Meninas
	Slide 9: Infanta Margarita
	Slide 10: Deconstructing & Constructing: Las Meninas – Infanta Margarita
	Slide 11: Deconstructing & Constructing: Las Meninas
	Slide 12: Deconstructing & Constructing: Las Meninas
	Slide 13: Deconstructing & Constructing: Las Meninas
	Slide 14: Why?
	Slide 15: Let’s build detestable pipelined processors!
	Slide 16: Multicycle Processor: Analysis
	Slide 17: Processor pipelines
	Slide 18: New problems in pipelining instructions (over arithmetic pipelines)
	Slide 19: Plan
	Slide 20: Control hazard
	Slide 21: Timing diagrams and bubbles
	Slide 22: How do we detect a misprediction?
	Slide 23: What does it mean to squash a partially executed instruction?
	Slide 24: Killing fetched instructions
	Slide 25: Epoch: a method to manage control hazards
	Slide 26: An epoch-based solution
	Slide 27: An epoch-based solution For concurrency, turn pcF in an EHR
	Slide 28: Discussion
	Slide 29: Epoch mechanism is independent of the sophisticated branch prediction schemes that we will study later
	Slide 30: 4-Cycle Harvard Processor into a 2-stage pipeline
	Slide 31: 4-Cycle Harvard Processor into a 2-stage pipeline
	Slide 32: 4-Cycle Harvard Processor into a 2-stage pipeline
	Slide 33: A 4-cycle, 2-stage pipeline – detestable machine
	Slide 34: 4-Cycle Harvard Processor into a 2-stage pipeline
	Slide 35: 4-Cycle Harvard Processor into a 2-stage pipeline 1 (correct?)
	Slide 36: 4-Cycle Harvard Processor into a 2-stage pipeline 2a (correct?)
	Slide 37: 4-Cycle Harvard Processor into a 2-stage pipeline
	Slide 38: 4-Cycle Harvard Processor into a 2-stage pipeline 2a (correct?)
	Slide 39: Data Hazards
	Slide 40: Pipelining Decode and Execute
	Slide 41: Three stage pipeline data hazard
	Slide 42: Data Hazard
	Slide 43: Dealing with data hazards (aka read-after-write (RAW) hazard)
	Slide 44: Scoreboard
	Slide 45: Two designs for scoreboard
	Slide 47: Scoreboard in the pipeline
	Slide 48: WAW hazards
	Slide 51: Processor Performance
	Slide 52: Bypassing
	Slide 53: Normal vs Bypass Register File
	Slide 54: Bypass Register File using EHR
	Slide 55: Bypass Register File with external bypassing
	Slide 56: A correctness issue
	Slide 57: Concurrency and Performance Suppose: doFetch < doExecute
	Slide 58: Concurrency and Performance suppose: doExecute < doFetch
	Slide 59: Summary
	Slide 60: Non-atomic prediction correction
	Slide 61: Decoupled Fetch and Execute
	Slide 62: A decoupled solution using epochs
	Slide 63: Control Hazard resolution A robust two-rule solution
	Slide 64: Two-stage pipeline Decoupled code structure
	Slide 65: The Fetch rule
	Slide 66: The Execute rule

